Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.

نویسندگان

  • Amy M Iler
  • David W Inouye
  • Toke T Høye
  • Abraham J Miller-Rushing
  • Laura A Burkle
  • Eleanor B Johnston
چکیده

Variation in species' responses to abiotic phenological cues under climate change may cause changes in temporal overlap among interacting taxa, with potential demographic consequences. Here, we examine associations between the abiotic environment and plant-pollinator phenological synchrony using a long-term syrphid fly-flowering phenology dataset (1992-2011). Degree-days above freezing, precipitation, and timing of snow melt were investigated as predictors of phenology. Syrphids generally emerge after flowering onset and end their activity before the end of flowering. Neither flowering nor syrphid phenology has changed significantly over our 20-year record, consistent with a lack of directional change in climate variables over the same time frame. Instead we document interannual variability in the abiotic environment and phenology. Timing of snow melt was the best predictor of flowering onset and syrphid emergence. Snow melt and degree-days were the best predictors of the end of flowering, whereas degree-days and precipitation best predicted the end of the syrphid period. Flowering advanced at a faster rate than syrphids in response to both advancing snow melt and increasing temperature. Different rates of phenological advancements resulted in more days of temporal overlap between the flower-syrphid community in years of early snow melt because of extended activity periods. Phenological synchrony at the community level is therefore likely to be maintained for some time, even under advancing snow melt conditions that are evident over longer term records at our site. These results show that interacting taxa may respond to different phenological cues and to the same cues at different rates but still maintain phenological synchrony over a range of abiotic conditions. However, our results also indicate that some individual plant species may overlap with the syrphid community for fewer days under continued climate change. This highlights the role of interannual variation in these flower-syrphid interactions and shows that species-level responses can differ from community-level responses in nonintuitive ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetrical disassortative pollination in a distylous primrose: the complementary roles of bumblebee nectar robbers and syrphid flies

Heterostyly is a floral polymorphism characterized by reciprocal herkogamy maintained through high levels of mating between morphs, serviced by appropriate pollinators. We studied how differential efficiency and abundance of distinct pollinators affect plant female reproduction in self- and intra-morph incompatible distylous Primula secundiflora. Bumblebees and syrphid flies were found to be th...

متن کامل

LETTER Biodiversity ensures plant–pollinator phenological synchrony against climate change

Ignasi Bartomeus,* Mia G. Park, Jason Gibbs, Bryan N. Danforth, Alan N. Lakso and Rachael Winfree Abstract Climate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species-specific phenological shifts and maintain synchrony at the community ...

متن کامل

Biodiversity ensures plant-pollinator phenological synchrony against climate change.

Climate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species-specific phenological shifts and maintain synchrony at the community level, as predicted by the biodiversity insurance hypothesis. Here, we explore how biodiversity might enhan...

متن کامل

Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions.

Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climat...

متن کامل

Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?

Climate change alters phenological relations between interacting species. We might expect the historical baseline, or starting-point, for such effects to be precise synchrony between the season at which a consumer most requires food and the time when its resources are most available. We synthesize evidence that synchrony was not the historical condition in two insect-plant interactions involvin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2013